Путь к прибыли: руководство по масштабированию retail media на площадке
Путь к прибыли: руководство по масштабированию retail media на площадке
19 сентября онлайн и офлайн
00
:
00
:
00
:
00
Конференция про будущее e-commerce: стратегии и инструменты, которые понадобятся завтра
Зарегистрироваться
Войти

Результаты сравнения рекомендательного сервиса Retail Rocket с Crossss

intro-500-340-13

Правильно организовать сравнительное тестирование рекомендательных систем очень непросто. Наконец-то появилось первое сравнение Retail Rocket с Российским аналогом (сравнение с одним из лидирующих западных сервисов проводилось в начале этого года – тогда мы показали огромное преимущество по эффективности).

В соответствии с соглашением о неразглашении конфиденциальной информации, мы не можем публиковать показатели, отражающие результаты деятельности интернет-магазина, на котором проходил тест. Поэтому в отчете приводятся только относительные показатели, установленные в результате А/Б теста, которые отражают разницу в эффективности сервисов. Отличительной особенностью этого кейса является то, что специалисты интернет-магазина в своем пост-тест анализе использовали данные о фактически проданных заказах, а не об оформленных, как это обычно бывает. Спешим поделиться деталями!

Описание теста

Исследование эффективности работы сервисов проводилось с помощью механики А/Б-тестирования и настраивалось специалистами интернет-магазина. Вся аудитория сайта случайным образом в реальном времени делилась на равные сегменты. Одному сегменту показывались товарные рекомендации Retail Rocket, другому – Crossss. Идентификатор каждого сегмента посетителей передавался в систему Google Analytics и в учетную систему интернет-магазина.

Пост-тест анализ специалистами Retail Rocket с помощью Google Analytics

По данным Google Analytics, в рамках тестирования проводился анализ более 400000 сессий пользователей. Сайт клиента имеет очень большой трафик и в веб-интерфейсе GA нет возможности анализировать данные без сэмплирования (неточного построения отчетов на основе небольшой выборки данных). Поэтому для выгрузки сырых данных без сэмплирования мы использовали API Google Analytics и получили следующие данные:

Конверсия Средний чек Выручка на посетителя
Преимущество Retail Rocket +4,33% -4,48% -0,35%

По полученным данным, система Retail Rocket дает рост конверсии на 4,33% (статистическая значимость превосходства – 99,72%)

cross-retailrocket-cr-distribution

При этом, в сегменте Crossss наблюдается рост среднего чека, что в итоге сводит на нет разницу по выручке между сегментами. Однако, разница по среднему чеку не является статистически значимой.

За время теста в сегмент Crossss попали 2 аномально больших заказа на 194400 руб.и 422840 руб. (суммы заказов превышают средний чек магазина в сотни раз, а в самом заказе содержатся 1-2 товара, заказанные в огромном количестве), для сравнения – в сегменте Retail Rocket стоимость самого крупного за время теста заказа ~35000 рублей).

cross-ga

Если убрать эти два аномально больших заказа из данных для анализа, получим следующие результаты:

Конверсия Средний чек Выручка на посетителя
Преимущество Retail Rocket +4,35% +0,86% +5,25%

Как видно из таблицы, убрав 2 аномальных заказа из данных для пост-тест анализа получаем, что Retail Rocket увеличивает средний чек чуть менее чем на 1%.

Вероятность попадания таких разовых заказов в любой из сегментов теста велика. Распространенной практикой для пост-тест анализа является удаление небольшого процента самых дорогих заказов из каждого сегмента, чтобы полностью исключить локальные пики в выручке, на которые в большинстве случаев тестируемые элементы не влияют. Удалив из обоих сегментов по 10 самых дорогих заказов, получим:

Конверсия Средний чек Выручка на посетителя
Преимущество Retail Rocket +4,32% +1,16% +5,53%

Как видно из таблицы, ситуация практически не изменилась.

Пост-тест анализ специалистами интернет-магазина на основе данных внутренней системы аналитики (с учетом аннулированных заказов и заказов колл-центра, которые оформлялись через сайт)

Один из самых точных способов оценки экономической эффективности любой функциональности сайта – исключение из данных для пост-тест анализа заказов, которые не отражают эффективности тестируемого изменения и искажают результаты исследования: тестовые заказы сотрудников магазина, фейковые заказы различных «шутников», заказы операторов колл-центра и так далее.

Именно такие «очищенные» данные использовали при анализе А/Б теста специалисты самого интернет-магазина. Полученные результаты приведены ниже:

Выручка на посетителя по оформленным заказам (за исключением аннулированных и колл-центра) Средний чек по оформленным заказам (за исключением аннулированных и колл-центра) Выручка на посетителя по исполненным заказам
Преимущество Retail Rocket +10,4% +4,7% +11,1%

Как видно из таблицы, преимущество системы Retail Rocket по выручке от исполненных заказов в два раза выше, чем по выручке от размещенных.

Выводы

1. По результатам тестирования Retail Rocket увеличивает «размещенную выручку» (без учета аннуляций, исполняемости и т.д.) интернет-магазина на 5,53% по сравнению с системой Crossss. Статистическая значимость результатов тестирования >99%.

2. По результатам анализа аннуляции и исполняемости заказов сотрудниками интернет-магазина, в сегменте Retail Rocket выручка на 11,1% превышает показатели системы Crossss (в абсолютных цифрах это миллионы рублей в месяц).

3. В рамках теста проводился сравнительный анализ только тех механик рекомендаций, которые есть у системы Crossss. В системе Retail Rocket есть целый ряд продуктов, внедрение которых позволит значительно повысить экономическую отдачу от системы. Пример – персонализация главной страницы по принципу Ozon.ru. Наши клиенты, Dostavka.ru, только с помощью этого одного сценария подняли выручку на 8,5%.

Предыдущая запись

Благодаря сервису Retail Rocket специалисты интернет-магазина www.svyaznoy.ru (группа “Связной”) увеличили конверсию блоков рекомендаций на 25,8%

Следующая запись

Как продавать больше через call-центр, используя сервис товарных рекомендаций

Понравилась статья? Подпишитесь на рассылку, чтобы получать свежие статьи на почту.

Подписаться на рассылку

Еще статьи по теме

Свежие статьи