Путь к прибыли: руководство по масштабированию retail media на площадке
Путь к прибыли: руководство по масштабированию retail media на площадке
19 сентября онлайн и офлайн
00
:
00
:
00
:
00
Конференция про будущее e-commerce: стратегии и инструменты, которые понадобятся завтра
Зарегистрироваться
Войти

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

intro

Персонализация поиска, страницы скидки и карточки товара — на что стоит обратить внимание в первую очередь?

Внедрение новых решений и поиск уникальных способов улучшить сервис чаще всего ложится на плечи крупных ритейлеров. Можно сказать, именно они задают тренды в e-commerce. Мы в Retail Rocket понимаем это и стараемся упростить магазинам поиск инноваций, предлагая новые подходы к персонализированному маркетингу. Совместно с «Эльдорадо» расскажем о персонализации страниц, которые в кейсах встречаются достаточно редко.

Цели и задачи «Эльдорадо»

«Эльдорадо» – российская сеть цифровой и бытовой техники. Философию бренда отражают следующие принципы: просто, выгодно, рядом. «Эльдорадо» близок к своим покупателям за счет удобных локаций магазинов и выгоден благодаря широкому спектру товарных предложений.

Ежемесячная доля онлайн-трафика составляет 16,2 миллиона пользователей, по данным Similar Web.

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Розничный магазин «Эльдорадо»

Для «Эльдорадо» важно поддерживать положительный покупательский опыт на каждом этапе взаимодействия клиента с интернет-магазином. Сейчас рекомендации Retail Rocket стоят на следующих страницах:

  • Главная страница
  • Карточка товара
  • Корзина
  • Сравнение товаров
  • Страница 404
  • Личный кабинет

После работы над основными этапами customer journey мы решили прокачать другие страницы. Цели были такие:

  • увеличить конверсию;
  • подобрать самые эффективные алгоритмы для страницы поиска и скидок;
  • сократить путь пользователя до покупки.

Решение Retail Rocket

За персонализацию сайта в Retail Rocket отвечает отдельная команда. Более 7 лет мы разрабатываем персональные алгоритмы и внедряем их. Одна из главных особенностей работы с механиками Retail Rocket: они полностью автоматизированы и работают на основе действий и интересов пользователей.

Чтобы подобрать лучшие алгоритмы, мы тщательно изучили магазин и провели несколько A/B-тестирований. Давайте подробнее рассмотрим каждый из тестов.

Тест № 1. Карточка товара

Начнем с карточки товара. Это очень интересная страница, где никогда нельзя предугадать, какой из алгоритмов покажет себя лучше всего. Именно поэтому в карточке товара всегда нужно проводить тестирование. Мы не рекомендуем проводить A/B-тесты самостоятельно по нескольким причинам:

  • любая ошибка влияет на корректность результатов. Скорее всего вы знакомы со случаями, когда по тесту магазин получает прирост, а по факту выручка через какое-то время уменьшалась;
  • недостаток экспертизы может привести к некорректному выделению сегментов пользователей, что также чревато потерей выручки.

Если вы хотите провести тестирование самостоятельно, то рекомендуем ознакомиться со статьей «Подводные камни A/Б-тестирования или почему 99% ваших сплит-тестов проводятся неверно?».

Вернемся к тесту. В рамках оптимизации работы рекомендательной системы «Эльдорадо» мы провели исследование эффективности различных алгоритмов в карточке товара магазина с использованием механики A/B-тестирования.

Все посетители сайта случайным образом делились на 3 сегмента:

Первому сегменту показывались похожие товары:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Второму сегменту показывались сопутствующие товары:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Третьему сегменту показывались похожие товары и сопутствующие товары. Он выступал в качестве контрольной группы:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Результаты

По итогам тестирования были получены следующие результаты:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Вывод

Согласно результатам тестирования, применение механики «Похожие товары» в блоке рекомендаций в карточке товара интернет-магазина «Эльдорадо» увеличивает конверсию 1,7%. В сочетании с приростом среднего чека на 4,4% это дает прогнозируемый прирост выручки на 6,1%. Статистическая вероятность равна 89%.

Тест № 2. Поисковая страница

Поисковая страница обычно не так популярна у пользователей. Чаще всего клиенты смотрят товары через категорию или переходят в разделы через главную. Однако для определенного типа покупателей поиск — важнейшая страница в интернет-магазине. Те, кто использует её, четко понимают свои желания и больше готовы к покупке, чем клиент, который бродит из раздела в раздел.

Как не упустить таких пользователей и дожать их? Мы решили использовать персональные рекомендации Retail Rocket. Они учитывают интересы клиента и предлагают к его поисковому запросу товары, которые могут его заинтересовать.

Исследование эффективности проводилось с использованием механики A/B-тестирования. Все посетители сайта случайным образом делились на 2 сегмента:

Первому сегменту показывались персональные рекомендации:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Второму сегменту показывались стандартные поисковые рекомендации. Этот сегмент выступал в качестве контрольной группы:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Результаты

По итогам тестирования были получены следующие результаты:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Вывод

Согласно результатам тестирования, применение механики «Персональные рекомендации» в блоке рекомендаций в пустом поиске интернет-магазина «Эльдорадо» увеличивает конверсию на 4,7%. В сочетании с приростом среднего чека на 1,6% это дает прогнозируемый прирост выручки на 6,4%. Статистическая вероятность теста равна 87%.

Тест №3. Страница скидок

Страницу скидок нечасто персонализируют, т.к. низкие цены сами по себе неплохо привлекают покупателей. Мы решили проверить, насколько хорошо персонализированное предложение будет работать вместе с ценовым фактором. Почему бы и нет, если можно получить дополнительную выручку?

Так же, как и при работе с поисковой страницей, для теста мы выбрали персональные рекомендации. Однако немного изменили алгоритм специально для страницы скидок. Теперь рекомендации учитывают не только интересы клиента, но и ищет наилучшие совпадения в акционных товарах. Мы провели A/B-тест, разделив пользователей на два сегмента:

Первому сегменту показывались персональные рекомендации со скидкой:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Второму сегменту показывались стандартные хиты продаж со скидкой. Этот сегмент выступал в качестве контрольной группы:

Результаты

По итогам тестирования были получены следующие результаты:

«Эльдорадо» и Retail Rocket: кейс по персонализации сайта

Вывод

Согласно результатам тестирования, применение механики «Персональные рекомендации со скидкой» в блоке рекомендаций на странице скидок «Эльдорадо» увеличивает конверсию на 3,8%. В сочетании с приростом среднего чека на1,3% это дает прогнозируемый прирост выручки на 4,2%. Статистическая вероятность теста равна 89%.

Отзывы по проекту «Эльдорадо» & Retail Rocket

«Эльдорадо» и Retail Rocket: кейс по персонализации сайтаНам важно работать с надежным подрядчиком, мастером своего дела. «Эльдорадо» ˗ важный магазин для российского рынка электроники, поэтому мы стремимся быть лучшими для наших покупателей. Retail Rocket помогает нам с этим в онлайн-пространстве.

Анатолий Мохов, руководитель департамента электронной коммерции «Эльдорадо» группы компаний «М.Видео-Эльдорадо»

«Эльдорадо» и Retail Rocket: кейс по персонализации сайтаРаботая с «Эльдорадо», я ощущала огромную ответственность. Хочется не просто предложить лучшее, а совместно создать новые стандарты сервиса в e-commerce. В рамках проекта мы реализовали множество идей. Работать с профессионалами такого уровня очень здорово и интересно.

Татьяна, 

менеджер,

Retail Rocket 

Предыдущая запись

Кейс Burdastyle.ru & Retail Rocket: персонализация мобильной версии сайта и рост конверсии на 27,7%

Следующая запись

Как увеличить продажи call-центра на 15% с помощью персональных рекомендаций? Кейс ElytS

Понравилась статья? Подпишитесь на рассылку, чтобы получать свежие статьи на почту.

Подписаться на рассылку

Еще статьи по теме

Свежие статьи