Делимся исследованием Retail Rocket Group о метриках, на которые стоит ориентироваться для увеличения долгосрочной выручки интернет-магазина.
Во второй части рассмотрим, как метрики работают, смогут ли их использовать магазины с разными категориями товаров, как можно отобрать полезные прокси-метрики из множества вариантов, и насколько хорошо они предсказывают долгосрочную ценность пользователей.
В третьей части обсудим бизнес-интерпретацию полученных метрик и как можно использовать их для оптимизации долгосрочной ценности пользователей, а значит и долгосрочной выручки интернет-магазина.
Одна из ключевых метрик, которую оптимизирует большинство компаний — LTV (Lifetime Value) — показатель прибыли, которую получает бизнес за всё время работы с клиентом.
Знание LTV позволяет прогнозировать выручку, планировать затраты на рекламу, оценивать окупаемость инвестиций, вычислять самых лояльных посетителей, сегментировать аудиторию по ценности и т.д. Соответственно, это очень важный показатель, и когда планируется какое-либо значимое изменение, важно знать, как оно повлияет на LTV.
То, как изменение повлияло на показатель, оценивают по отношению к другому изменению или его отсутствию. Обычно для этого проводится проверка гипотез с помощью тестов. Если при этом используются долгосрочные показатели — такие, как фактический LTV, то возникают следующие проблемы:
Из-за перечисленных проблем тестировать улучшения, ориентируясь на изменения фактического LTV, практически невозможно. В качестве решения предлагаем использовать прокси–метрики LTV, на обнаружение изменений в которых требуется гораздо меньше времени.
Прокси–метрика — косвенная мера целевой метрики, с которой она сильно коррелирует. По изменению в прокси-метрике мы как минимум должны понять направление изменения целевой метрики. Например, ВВП на душу населения может быть прокси-метрикой качества жизни в некотором регионе.
Часто наши клиенты (интернет-магазины) выбирают в качестве прокси-метрик LTV признаки, связанные с заказами: например, конверсию в покупателя, среднее количество заказов на пользователя, средний чек, среднюю выручку на пользователя в прошлом и т.д. Эти признаки коррелируют с будущим LTV, так как если пользователь совершил покупку в прошлом, то вероятность повторной покупки в будущем увеличивается.
Но остается открытым важный вопрос: нет ли прокси-метрик более полезных для оценки влияния на будущий LTV текущих изменений в магазине?
С помощью прокси-метрик формируется общий критерий оценки изменений — OEC (overall evaluation criterion). Это количественный показатель цели эксперимента, который должен отражать бизнес-цели компании – например, быть связанным с LTV. Он нужен, чтобы автоматизировать и формализовать процесс принятия решения о внедрении тех или иных изменений. При формировании OEC метрики всех целей эксперимента сводят к единому показателю.
Свойства хороших прокси-метрик для OEC:
Найти подходящие прокси-метрики для OEC не всегда просто. В материале Microsoft приведен пример, как в поисковой системе Bing от Microsoft выбрали интуитивно понятные метрики для оптимизации: количество запросов к поиску и выручку. В какой-то момент возник баг, и поисковые выдачи стали работать явно хуже – пользователям показывали по 10 рекламных строк за выдачу в начале списка. Чтобы найти нужный результат, людям приходилось делать больше запросов, соответственно, рекламы тоже стало больше, а с ней увеличилась и выручка.
Данные изменения краткосрочно увеличили количество запросов на одного пользователя на 10%, а выручку — на 30%, но если бы их внедрили, это уменьшило бы лояльность пользователей и те в конечном счете ушли бы к конкурентам. Этот пример наглядно показывает, как краткосрочные показатели могут расходиться с долгосрочными целями компании.
Подобное несложно сделать и в интернет-магазине — увеличить все цены, что, возможно, приведет к увеличению среднего чека и выручки, но в долгосрочной перспективе пользователи предпочтут конкурентов.
Еще одним минусом использования признаков о заказах в качестве прокси-метрики является их слабая чувствительность, так как часто из всего потока пользователей заказы совершает малая его часть — обычно до 5%. Поэтому, чтобы зафиксировать значимые изменения по этим метрикам, нужно проводить длительные тесты.
Для поиска кандидатов в прокси-метрики к LTV использовали алгоритмы машинного обучения. Далее, выбрали наиболее полезные и понятные бизнесу. В исследовании опирались на данные 27 магазинов с различными категориями товаров. Такое разнообразие позволило найти наиболее универсальные и полезные прокси-метрики, которые должны работать на многих магазинах.
Чтобы предсказать LTV для набора магазинов, использовали следующие метрики:
Разделили пользователей на три сегмента в зависимости от их действий в прошлом:
Затем в каждом сегменте разбили пользователей на группы по вероятности покупки в соответствии с моделью. В каждой группе показано число и процент пользователей, которые совершили покупку в следующие полгода. Как видно, модель умеет выделять более склонных к покупке в будущем посетителей даже среди тех, кто ничего не покупал и не добавлял в корзину.